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The Mayer-Bolza problem of the calculus of variations is described in 
relation to solution of problems of the theory of optimum systems. The 
necessary conditions for optimization of processes are established and 
an investigation of optimum states in linear systems is given. 

1. Formulation of the problem. Let a system of n ordinary 
differential equations of the first order be given 

g, = s, - fs (Xl ) . . . , x,, Zll, . . . UR,, t) = 0 (s=l,...,n) (1.1’) 

with the finite relations 

~k=~k(~l,-~~,%l,t)=O (k=l,...,r<m) (1.2) 

describing the behavior of a certain mechanical system. Here, XI, . . . , x, 
are the coordinates of the system, and the quantities uI, . . . , us will 
be called the control parameters, according to the comuon terminology. 
We shall consider that the state of the system at the initial time t = to 
is given by the relations 

5s (to) = xs” (s=l,...,n) (l-3) 

Moreover, we shall require that the coordinates n.(T) at a certain, not 
necessarily fixed time t = T be related by the equations 

02 = a [Xl(T), . * . IX,, (T), T] = 0 (l=l,...,p<n) (1.4) 

We formulate the problem of optimization in the following way. 
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Determine the functions n,(t) (s = 1, . . . , n) satisfying Equations 
(1.1) and the initial conditions (1.3), and determine the control para- 
meters uk(t) (k = 1, . . . . m) connected by the relations (1.2) in such a 
way that the functional 

J=J[;C,(T),...,s,(T),Tl (1.5) 

assume a stationary value, with the conditions (1.4) being satisfied at 
the time t = T. 

This formulation of the problem is different from the general formula- 
tion investigated by Pontriagin [ 3 1. The maximum principle provides the 
necessary condition for the minimum value of the functional. The solution 
of the Mayer-Bolza problem in a similar formulation had been given in 
the lectures of L.I. Lur’e, the contents of which have been extensively 
used in the following arguments. 

A trajectory in the n + I dimensional space x1, . . . , I,,, ul, . . . , un 

which satisfies the conditions formulated above will be called the ex- 
tremal. 

An essential property of the problems of optimization is the existence 
of limitations imposed on the parameters uk(f) and, in general, on the 
coordinates Ls( t). We shall assume now only the existence of limitations 
on the parameters of control. In this case it is necessary to consider 
discontinuous parameters uk( t). Therefore. in the following the functions 
xs( t) will be considered to be continuous, and the parameters uk( t) and 
the derivatives of the coordinates xs( t) will be considered to be func- 
tions with a finite number of finite discontinuities in the investigated 
interval t0 < t < T. 

The formulation given, above extends over a large class of optimization 
problems. Thus, for instance, in the optimization with respect to high- 
speed performance, the functional J is to be assumed in the form J = T, 

with the conditions 

CD, = Xl (T) - XIT = 0 (l=l,...,n) (I.61 

which corresponds to the problem of optimization of the period of transi- 
tion of the system from the given initial state (1.3) into the state with 
the coordinates 

xs (T) = SST (SE l,...,n) (1.7) 

T The quantities xs may be, obviously, equal to zero. In problems of 
this type the time of transition T is not fixed. If T is prescribed in 
advance, an arbitrary coordinate z,(T) may be prescribed at t = T and, 
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thus, J = %,(‘I’). The remaining coordinates may be considered as being 
given, i.e. 

T  
u$=r*(T)-xsl =o (1=-I ,..., a-l, a+1 ,..., n) (1 S) 

We consider now the classical problem of Mayer [ z I. 

If J= J[ x,(T), . . . . x,.,(T) 1 , then a certain function of the coordi- 
nates at a fixed time t = T is optimized. Using the functionals of the 
type 

T  

5 
F [x1(t), . , zn (t), u1 (f), . . , u,(t), tl dt 

0 

we can reduce the problem to the simpler problem of Lagrange of the cal- 
culus of variations [ 2 1. This case is obviously also included in the 
formulation given above. In fact, introducing a new coordinate in+ I(t) 
satisfying the equation 

g,+l =‘&,+I - F [XI,.. . , x,, ul, . . . u,, t] zz o 

we are led to the problem of optimization of the value zs+ I(?‘) of this 
coordinate at the finite time t = T. An analogous assumption may be used 
in order to take into account a condition of the type 

T  

s q h(t), . . , x,,(l), UI (t),> . . . > u,(t), t] dt = c 
0 

This condition can be written in the form a,,+ I = x,,+ I(T) - C. Here, 
the coordinate z n+ I(t) satisfies the equation 

of 
In 

g,+, = in+1 --‘p [Xl, . . . I x,, Ult . . , u,, t] =o 

This statement could be considerably generalized. 

The examples given here confirm our proposition that a large number 
optimization problems may be formulated in the way described above. 
this, the forms of the functional J and the conditions (1.4) usually 

reflect the physical meaning of the optimization problem. 

2. Necessary conditions of extremum of the functional J.. 
We construct the expression 

t, SC1 k=l 1=1 

(2.1) 

where Xs( t), pk( t) , and pz are undetermined mu1 tipliers of Lagrange. 
Since its right-hand side terns are equal to zero, the conditions of ex- 
tremum of J and I are identical. 
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Calculating the variations of the functional I we shall assume that, 
in the interval t0 G t ST, one point t = t* exists where the control 
parameters become discontinuous. 'Ihe existence of several points of this 
type would only complicate further calculations. 'Ihe above assumption 
splits the interval t,, < t 6 T into two subintervals to < t < t* and 
t* < t 6 T, in which uk(t) are continuous. Accordingly, we shall denote 
by r,(t), Qt), Xs-W, ,u,Jt) th e values of the functions defined 
above in the interval t o 6 t < t* and by u,+(t), uk+W, A,+(t), ,uk+(t) 
the same values in the interval t* < t 6 T. 

'Ihe formulation of the problem indicates that in the calculation of 
variation of the functional I we should not vary the time t entering ex- 
plicitly, for instance, in Equations (1.1) and (1.2). Nevertheless, the 
existence of the limitations of the type (1.4) necessitates the variation 
of the abscissa of the end T. 'Therefore, we shall have to make a dis- 
tinction between "the variation at the endn, for instance 6ns+(T), and 
mthe variation of the end", Ars +('I'). 'Ihe relations between them can be 
easily derived: 

Ax,+ (7’) = 6x,+ (2’) + is+ (T) 6T (2.2) 

'Ihus, for the variation AJ we have the expression 

An analogous expression can be obtained for A$. 

Similar remarks apply to the variations of functions at the point 
t = t* where uk(t) become discontinuous. Here it is also necessary to 
make a distinction between lithe variation at the point", Sx,*(t*), and 
"the variation of the pointl, AxS*(t*). They are related by 

Ax: (t*) = 6x' (t*) + iT (t*) 6t* (2.4) 

We can construct now the variation AI. Omitting all the intermediate 
transformations, we write it in the final form 

i-A5 P$‘, =[{i 6h,- [.i-- Is (xl-, . . . , z&-, ul-, . . . , urn-, t)] - 

1=1 10 s=1 

- i L$,~-$~ (ul-, . . . , I/,,,-, t)) dt - 
!i=L 
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-pxs- [~.-~~l~h,-J+~lbu,-li:h~-~+ $&$$dt + SZl SE1 P=l 

+ f{-j 6h,+ [is' - js (x1+, . . . , x,,+, ul+, . . . , u,+, t)] - 

t* s=1 

- ‘jj ty; $h. (ul+, . . . , u,,,+, t)) dt - i{i 6x,+ [is+ + 5 G I.,+] t 
P=l 1' e=1 a=1 

+ -jj h+ [i L+ + + $$+ $t]} dt + 

k=l *=1 

-+ i [A,- (t*)--h,+ (t*)] Ax, (t*) - i [h,- (t*) is- (t*) - &+(t*) &+(t*)] 8t* (2.5) 
SC1 a=, 

It has been shown here that the intervals of the integrals may remain 
unvaried, because the integrands and at, are equal to zero. The compo- 
nents containing 6pI vanish for the same reason (@I = 0). In the deriva- 
tion of Expression (2.5) the formulas of the integration by parts were 
used 

/* 1’ 

5 A,- Si,- dt = A,- (t*) b,.- (t*) - 1 is- (t) 6x,- (t) dt (3.6) 

to lo 
T T  

\ A,+ &is+ dt L- h,+ (7’) BY,+ (2’) - h,+ (t*) 6x$+ (t*) - \ is+ (t) 6x,+ (t) dt (2.7) 
1* I’* 

as well as the relations (2.4) and the conditions of continuity for the 
functions lcs( t) 

Liz,- (t*) = x,+ (t*), Ax,- (t*) = Ax,-(t”) = Ax, (t*) (2.8) 

We note now that variations Gxs*(t), 8Xs*(t) (s = 1, . . . . n), 
8pk*(t) (k = 1, . . . . r), at*, ST, An&t*) (s = 1, . . . . n), 2(m - r) 
variations 6pk*( t), and n - p variations 6x,+(T) are independent. ‘lhere- 
fore, it is possible to determine 2r Iagrangian multipliers pk*( t) and p 
constants pl in such a way that the coefficients of the dependent vari- 
ations auk* ( t) and p V ariations 6rst(7’) become zero, and to assume the 
coefficients of the remaining independent variations equal to zero. After 
this operation we obtain the system of equations 
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iis* - fs (x1= ( . . . ) x,-, q* 3 f  - . 9 ?&+, t) = 0 (s = 1, . . ., n) (2.9) 

$k (Ul’, . . . ( u,,,‘c, 1) = 0 (k=i,...,r) (2 10) 

coinciding with (1.1) and (1.2), the equations 

(2.11) 

(2.12) 

the boundary conditions for the function AS(t) 

LL (1’) + sa [,,;;,,.,]=o (s=l,...,n) (2.13) ax + (T) 
I=1 

the equality 

(2.14) 

and the Erdmann-Weierstrass conditions 

is-(P ) = A,+ (1':) (s = 1, !. . , n), i [L-x, - A,+ is+~~=p = 0 (2.15) 

S=l 

These relations should be complemented with the initial conditions 
(1.3), the continuity conditions (2.8) and Equations (1.4). 

In this way, 
xp, 

in order to determine 4n + 2m + 2r functions xS 'w, 
u,*w, /Q*(t), we have constructed 4n differential equations of 

the first order (2.9) and (2.11), which introduce 4n integration con- 
stants, 2m relations (2.12), and 2r relations (2.10). Thus, 4n arbitrary 
constants, p multipliers pl, and the values of t* and T, altogether 4n + 
p + 2 quantities, remain unknown. To determine these quantities we have 
n initial conditions (1.3), II continuity conditions (2.8), n boundary 
conditions (2.13), n + 1 Erdmann-Weierstrass conditions (2.15), p rela- 
tions (1.4), and Equation (2.14). Their number is also 4n + p + 2; there- 
fore, the problem of determining an extremal may be completely solved. 

3. Other forms of the above relations. If the Lagrangian func- 
tion 

n r 

(3.1) 
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is taken into consideration, then Equations (2.11) and (2.12) may be 
written in the form of ordinary Euler equations 

d 3L 3L ---- 
dt & ax, = 0 (s = I,. . . , n), aL - 0 au - (k = 1,. . . m) (3.2) 

s k 

constructed in terms of this Lagrangian function. Similarly, the equal- 
ities 

auah, = 0, (s = 1, . . , n), aL/apk =o (k=i,...,r) (3.3) 

may be established, which yield Equations (2.8) and (2.10). 

The first n of the Erdmann-Weierstrass conditions (2.15) may be also 
formulated in the form of the conditions of continuity of the derivatives 
of the Lagrangian function 

at the points of discontinuity of uk(t), and the last one of (2.15) may 
be replaced by the condition of continuity 

for the function 

Hi=2 h A= i: ~,f,(Xl,..., x,, u1 I..., u,, t> 
ET=1 SZl 

The function (3.6) is the basis of the maximum principle of Pontriagin 
in the theory of optimum systems [3,4 1. We note here that in the pre- 
sence of limitations of the type (1.2) optimum processes correspond to a 
weak extremum of the functional Hh.'Ihis follows from Equations (2.12), 
which may be constructed in terms of the function 

n r 

S==l P=l 

In addition, we note that Equations (2.9) and (2.11) may be written 
in the form 

which is used in the derivation of the maximum principle. bations 
(2.10) and (2.12) assume a similar form: 

dHiaUk = o (k = 1, . ( m), aHIapk = o (/c=l,...r) (3.9) 
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Consider now the condition (2.14). After certain elementary trans- 
formations it can be written in the following form: 

In the case when the functions f, and $Q do not depend explicitly on 
time t, Equations (2.9) and (2.11) admit the first integral 

III = 12 = const 

lhis may be easily derived by considering the expression 

Therefore, instead of (3.10) we have 

(3.11) 

(3.12) 
1=1 

Finally, we shall give a somewhat unusual matrix form of the relations 
(2.9) to (2.15). We introduce [5 1 the column matrices n and X of the 
order II and the column matrices u and /A of the orders m and r, respectiv- 
ely: 

5 = (51, * . . 9 &I), h = (A,, . . * 1 Ll 
u = (q, . . . 7 &,,I, p = @.I, . . . 7 lb> (3.13) 

Furthermore, we construct the column matrices f and I/J according to the 
rules 

/ = VI. . . . 1 /#I), $ -= ($.l, . . ., $1 (3.14) 

and the column matrices of the differential operators 

(3.15) 

of the orders II and m, respectively. Equations (2.9) to (2.12) may now 
be written in the form 

where primes denote the operation of transposing. 'lhe initial conditions 
are represented as the equality 

z (to) = x0 (3.17j 

where P is the column matrix of the initial values x,". Similar form is 
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obtained for the continuity conditions (2.8) and (2.15): 

x- (1") = 5+ (t*), A- (t*) = ?i+ (1*) (3.18) 

The boundary conditions (2.13) assume the form 

h (1') :- -;)-;!c (J + p'aq = 0, (p := (PI. . . , pp), (I) {@I, . . . 1 @,I,) (3.19) 

where p and @ are column matrices of the order p. The relation (2.14) 
has the form 

g [J + f-J’@‘] = 0 (3.20) 

and instead of the equality (2.15) we have 

(?A:);=,. - (h'2$;[. - 0 (3.21) 

Note that the following expression may 
be given for H: 

H = Hh -1 H, = h’f -I- p’ I$ (3.22) 

with the alternate formulation (3.5) f or the condition (3.21) being pre- 
served. 

4. Linear differential equations. We shall consider'now the 
optimization problem for a system of linear differential equations with 
constant coefficients [6 ] 

in terms of the functional J of the general type (1.5) with the limita- 
tions 

lJ{;’ < rip \< lif’ (3 = 1, ) IN’) (4.2) 

imposed on the control parameters up. In order to take into account these 
limitations we introduce the functions [7,8 I 

up == Xp.(",n'+P) (;3 = 1, . , m') 

satisfying the following requirements: 

* #('* du ljk’ < Xp (ll,*+p ) ( Irif’ for U,,,QJ ( u,,+p < U,,,LTj (4.3) 
,> 

‘lXP 0 
% (1~ 

---zzz 
,,,,r5) = Ui,” for u,~,&$ < U,!,lb 

du m’+,p x (U,,,‘~ [, )=UF) for u ,,,‘- 4 > “,& 
(4.4) 

(fi- I, .( m’) 
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An example of a diagram of such a function is shown in the figure 
(with m = m'). We include ua'+P (p= 1, . . . . m’) into the number of con- 
trol parameters, i.e. we consider that m = 2m'; and we establish the re- 
lations 

qh. = ?lh - Xk (Zl,,,'$.~) = 0 (I; = 1, , m') (4.5) 

'Ihe optimization problem has now exactly the same formulation as de- 
scribed in Section 1. With the aid of the functions xk and the conditions 
(4.5) we are able to get rid of the limitations (4.2), and thus to shift 
from the closed region of variation of the parameters ul, . . . . un' to the 
open region of variation of the parameters ul, . . . . uII', UIR'+ 1, **., U m' 

Equations (4.1) and (4.5) can be written in the matrix form 

x = 6x + hu,, qJ = 111 - x (UI,) = 0 (4.6) 

Here n, $, u = { uT 1 urr ] have the meaning explained above (see (3.13) 
and (3.14)), and - -- 

UI = {u,, . . . , Ill,,,), 1111 = {I/,,,*, 1, . . ) urn} 

are the submatrices of the column matrix u [ 5 1. The symbols 
note a square matrix of the order n and a rectangular matrix 

(4.7). 

b and h de- 
nx m' 

(4.8) 

With the aid of the relations (3.14) we construct the equation 

h + b'h = 0 (4.9) 

which determines the column A, and we write the matrix of the differ- 
ential operators d/au in the form 

On the basis of the equality (3.16) we have 

(4.10) 

(4.11) 

(4.12) 
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where the matrix 

(3X’ (u,,) i y&+ 0 
-g-q =- . .&x. 

0 . . . ,n 
du WI’ 

is diagonal. 

'Ihe solution of Equation (4.6) has the following form L9 I : 
f 

(M (t) = ebf) 

A similar expression 

h (t) = M (T - t) h (T) 

(4.1.3) 

(4.14) 

(4.15) 

gives the solution of Equation (4.9), satisfying the boundary condition 
for t = T. Substituting it into the relation (4.12), we obtain 

Hence we find* 

h’M’ (7’ - 1) h (2’) + p = 0 

(4.16) p = - h’llf’ (1’ - I) h (5”) + 0 for h (5") # 0 

where all the elements of the column p are different from zero. 

Now, on the basis of the equalities (4.12) and (4.13), we obtain 

since neither one of ,nk(t) is identically equal to zero: p,(t) f 0 (k=l, 
. ..) in'). 

Consequently, optimum processes in linear systems have an important 
property: the control parameters in such processes assume only limit 
values 

ilk = Uk('), or Uk =I b-y (Ii :: 1 ) , ,,I') (4.18) 

l We assume that Equation (4.6) is not degenerate [ 6 ] . 
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Let us note that the solution (4.14) of JZquation (4.16) for uI = II= 
const assumes the form 

5 (t) = ll4 (1 - to) x0 + fi (t - to) hC’ (.T (I) = s n!l (T) q (4.19) 
0 

We shall investigate now the continuity condition (3.5) of the func- 
tion H which, in the case being considered, has the form 

Only its second term 

VI’ 
h’hU[ = 2 (h’hJ zq. 

k-1 

may be discontinuous. 

Here hk denotes the kth column of the matrix h. 'Iberefore, the dis- 
continuities of the control parameters uk(t) may exist only for t = t* 
where the function h’(t)h, is equal to zero 

A' (P) hk = 0 (4.20) 

and only the parameter u,(t) becomes discontinuous unless, obviously, any 
other column h, satisfies an equation of the type (4.20) for t = t*. 

'Ihe results obtained allow for proof of a known LlO 1 theorem of R 
intervals. For this purpose it is necessary to consider Equations (4.1) 
with one parameter u1 = u under the assumption that the principal values 
of the matrix b are all real. Ihe diagram of the function X'{t)h, = 
X’(t)h then has not more than n - 1 intersections with the t-axis on an 
arbitrary finite interval of time. Consequently, on the interval to < 
t Q T the parameter u(t) cannot have more than n - 1 discontinuities, and 
the total interval is divided into n subintervals in which the parameter 
u(t) assumes either one of its limit values UC" and U(*). 

Repeating similar arguments for systems with m' parameters uk(t) 
(k = 1, . . . . m'), we obtain a generalization of this theorem. For optimum 
processes in such systems, if their characteristic equations have real 
roots only, the interval t,, 6 t 4 T is divided into m'n subintervals in 
which each of the control parameters assumes one of its limit values 
Ilk(l) or II k(2) 

Let us note that the results obtained are valid for an arbitrary form 
of the functional J. Some of them can be extended over nonlinear systems 
181. 
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Here, as well as in Section 5, only results which are valid for linear 
systems are presented. A complete solution of the optimum problem with 
respect to high-speed performance is given in 16 I. 

5. Examples. We shall consider the problem of optimum transient time 
for the linear system 

.I‘ = bx + lrtr (5.1) 

with one control parameter u. In this equation, x and h are one-column 
matrices of the order n, and b is a square matrix of the same order n. 
The functional I is to be taken in the form J = T, while the conditions 

(1.4) q a.v be expressed as 

ID=.r(T)-2-=0 (5.2) 

The initial conditions for x are given by the relations (3.17). The 
boundary conditions for the functions As(t) may be written in the form 
of one matrix relation x(T) = - p. This last relation and the equalities 
(4.17) give 

1, (I) : -,,ll’ (T - li p (5.3) 

and thus in order to determine the instants of time tl, . . . , t 
responding to the switches of the control u(t), we have the re?~tl!o~or- 

j,’ (ti) h =. - :,‘.l/ (T - /i) I/ y.= 0 (5.4) 

The total interval to 6 t < T splits into the subintervals t,, < t < tl. 

tl < t < tp. . . . . t 9- 1\‘t\(t 9 
- T, and for each of them a solution can 

be constructed 

where the notation ri = x( ti) is used, and it is assumed that II = const. 
At the end of ith interval we have 

“i+l 
= .c (liS1) Z .l/ (ti+l - fJ"‘i - :V(ti+l- fi)lLU (5.5) 

To be specific, we assume that on the first subinterval t0 < t < tl 
the control parameter uf t) = U,. On the second interval it is equal to 
V,, on the third it is again equal to II,. and so on. Writing the equal- 
ities of the type (5.5) for each subinterval and eliminating xi, i = 1, 
. ..I q - 1, we obtain the following formula for an even Q = 2q’: 



layer-Bolza probler of the calculus of variations 1007 

and for an odd q = 29’ + 1 

.rq = .%‘+I = z (‘T) = M (T - I”) .I? f (5.7) 

q’+1 rl# 

+ x A4 CT - ‘?i-l) A’ (‘,i-l - l2i-z) hu, 4-x M (T - fQi) iV (tzi - tOi-,) h,!,‘, = ,T 
i=l i=l 

Similar expressions could be written for the case of u = II, on the 
first subinterval. They follow from Expressions (5.6) and (5.7) if II, is 
replaced by Cl2 and vice-versa. If  there is no principal value of the 
matrix b equal to zero. the matrix N(t) may be represented in the form 

-V(t) ~ 6-l [J/(t) - /I 

where I is the unit matrix. Thus, instead, for instance, of Expression 

(5.6) we have 

z (T) = z&, = .I1 (T - - I”) so -,- 6 I.11 (T f,,) hi,‘, b-‘hf’: -t 

+ 5 M (T - fzipl) b--‘/1 (U, ~- U,) 
q-1 

;- 2 zlf (T- /.,i) O-‘/t (Ul - U,) = zT (5.5) 
i=l i=l 

I f  there are no multiple principal values of the matrix b [ 5 I, then 

b = CI\C-‘, .lf (/) = $1 = @“c-l 

where A is the diagonal matrix of the principal values hi of the matrix 
b. Expression (5.8) may be written in the form 

-* (‘l--/,),0 ie c-lx(T) c= e , e’ 1 ‘T-‘“‘,~-‘h”ll‘, - ,l-‘h”[;:! T 

+e (7-l 
eh (T--12i- 

l)A-‘t~” (U, - L,) + 
2 e.2 (‘r-‘zi) _ 

,1 ‘h” (Cl1 - LI,) >- i’r 

i=l i=l 

Here 20 = c-lx;, -‘I ~~ c lJ.7 ho =+ c-‘li 
The same result in scalar form is 

Here Zj’, t * , T and h.O denote the jth elements of the respective 
columns. In a’similar &y the remaining relations may be transformed 

into scalar form. 
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In order to solve the problem of optimum transient time, it is neces- 
sary to select the values pi of the column p, which determine the in- 
stants of switching the control u(t), in such a way that for t = T the 
relations of the type (5.6) or (5.7) are satisfied. But in some cases one 
can avoid this lengthy process of calculation and limit oneself to the 
solution of Equation (5.6) or (5.7). 

To clarify this, let us consider a simple problem of optimum transient 
time with the condition 

Ii, < s 4 c-2 (5.9) 

It can be reduced to the problem discussed above by introducing the 
following notations: 

and dealing with the equations 

The matrices b, M(t), and N(t) are now of the form 

(5.12) 

Substituting them into the equation obtained from (5.6) with t,, = 0 
and q’ = 1 

we obtain two scalar equations 

(5.13) 

Their solution has the form 

From the values of T given by (5.14) the smaller one should be taken 
into account. Thus, the problem of synthesis of an optimum system may be 
solved with Expressions (5.14) and (5.15). The results are well known 
[ 10 I and they will not be repeated here. In this simple case, it was 
possible to solve the optimization problem without the use of the rela- 
tions (5.4). 
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We shall consider now the optimization problem of the linear system 
(4.1) with the functional 

being the definite quadratic form of the coordinates x,(T) at the fixed 
time t = T. There are no limitations imposed on their values. In this 
case 

h(T): - ir ~ J z -- ax (T) 
dz ('1') 

and repeating the calculations described above we 
equation: 

obtain the following 

5' (T) nilI (T - ti) 12 I 0 (5.18) 

(5.17) 

which determines the instants of time ti of switching the control u(t). 
Substituting r(T) from, for instance, the relation (5.6) into (5.18). we 
obtain 

xO’M (T - to)+ lJ1 f: Ii/N’ (Cziml - /2i-2) nrf (T - t‘+ ) -r 
- 1 

f=l 

+ lJ2 i II’N’ ( f?i - t,i-1) Al’ (T pe,fzi)} 0.lI (T - tj) 12 1 0 

i=l (5.19) 
(; --= 1) ( 2/f -- 1) 

In a similar we.v the equations corresponding to odd q = lp’ + 1 (5.7) 
or the other sequence of switching controls may be obtained. 

In the preceding example of the system (5.11) we had Q’ = 1. From 
(5.19) we obtain one equation 

-; 011 (U3 - U,) (T - fly+ -+ 013 ( L’c - L-1) (T - tl)” + 

) all + (12~ + T U ,I ~1~1 (T -- 1,) -L (5.20) 

1'2 u,) + (I?? (.c:" -j- 7' u,) ._ (I 

which determines the instant of time of switching the control u(t). 

I f  the square of the coordinate x,‘(T) = X’(T) is minimized, then the 

coefficients a 12 = az2 = 0 and we have the relation 

(T - f*)? _ && (r&” ~. “7‘,.2’ - 7” c:,) (5.21) 

from which the value of tl can be easily determined. 

In conclusion, the author wishes to express his gratitude to A.I.Lur’ e 
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for his help in this work. 
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